Construction Materials - Engineer Forum

Engineer Forum

Engineer note available for TU, PU, KU, PSC and Others Compitative Exam

Post Top Ad

Responsive Ads Here

Construction  Materials


Instructional Objectives
At the end of this lesson, students should know
Properties and applications of common engineering materials.
·         Types and uses of ferrous metals such as cast iron, wrought iron and steel.
·         Types and uses of some common non-ferrous metals.
·         Types and uses of some non-metals.
·         Important mechanical properties of materials.
1.2.1 Introduction
Choice of materials for a machine element depends very much on its properties, cost,  availability  and  such  other  factors.  It  is  therefore  important  to  have  some idea  of  the  common  engineering  materials  and  their  properties  before  learning the details of design procedure. This topic is in the domain of material science or metallurgy but some relevant discussions are necessary at this stage.
Common engineering materials are normally classified as metals and non- metals. Metals may conveniently be divided into ferrous and non-ferrous metals. Important ferrous metals for the present purpose are:
(i)  cast iron  (ii)  wrought iron  (iii) steel.
Some of the important non-ferrous metals used in engineering design are:
(a) Light  metal  group  such  as  aluminium  and  its  alloys,  magnesium  and manganese alloys.
(b) Copper based alloys such as brass (Cu-Zn), bronze (Cu-Sn).
(c) White  metal  group  such  as  nickel,  silver,  white  bearing  metals  eg.
SnSb7Cu3, Sn60Sb11Pb, zinc etc.
Cast iron, wrought iron and steel will now be discussed under separate headings.
1.2.2  Ferrous materials
Cast  iron-  It  is  an  alloy  of  iron,  carbon  and  silicon  and  it  is  hard  and  brittle. Carbon content may be within 1.7% to 3% and carbon may be present as free carbon or iron carbide Fe3C. In general the types of cast iron are (a) grey cast iron and (b) white cast iron (c) malleable cast iron (d) spheroidal or nodular cast iron (e) austenitic cast iron (f) abrasion resistant cast iron.
(a) Grey cast iron- Carbon here is mainly in the form of graphite. This type of cast  iron  is  inexpensive  and  has  high  compressive  strength.  Graphite  is  an excellent solid lubricant and this makes it easily machinable but brittle. Some examples  of  this  type  of  cast  iron  are  FG20,  FG35  or  FG35Si15.  The numbers  indicate  ultimate  tensile  strength  in  MPa  and  15  indicates  0.15% silicon.
(b) White  cast  iron-  In  these  cast  irons  carbon  is  present  in  the  form  of  iron carbide  (Fe3C)  which  is  hard  and  brittle.  The  presence  of  iron  carbide increases  hardness  and  makes  it  difficult  to  machine.  Consequently  these cast irons are abrasion resistant.
(c) Malleable  cast  iron-  These  are  white  cast  irons  rendered  malleable  by annealing. These are tougher than grey cast iron and they can be twisted or bent  without  fracture.  They  have  excellent  machining  properties  and  are inexpensive. Malleable cast iron are used for making parts where forging is expensive such as hubs for wagon wheels, brake supports. Depending on the method of processing they may be designated as black heart BM32, BM30 or white heart WM42, WM35 etc.
(d) Spheroidal  or  nodular  graphite  cast  iron-  In  these  cast  irons  graphite  is present  in  the  form  of  spheres  or  nodules.  They  have  high  tensile  strength and  good  elongation  properties.  They  are  designated  as,  for  example, SG50/7, SG80/2 etc where the first number gives the tensile strength in MPa and the second number indicates percentage elongation.
(e) Austenitic cast iron- Depending on the form of graphite present these cast iron can be classified broadly under two headings:
Austenitic flake graphite iron designated, for example, AFGNi16Cu7Cr2
Austenitic spheroidal or nodular graphite iron designated, for example, ASGNi20Cr2. These are alloy cast irons and they contain small percentages of silicon, manganese, sulphur, phosphorus etc. They may be produced by adding alloying elements viz. nickel, chromium, molybdenum, copper and manganese in sufficient quantities. These elements give more strength and improved properties. They are used for making automobile parts such as cylinders, pistons, piston rings, brake drums etc.
(f)  Abrasion resistant cast iron- These are alloy cast iron and the alloying elements render abrasion resistance. A typical designation is ABR33 Ni4 Cr2 which indicates a tensile strength in kg/mm2  with 4% nickel and 2%
chromium.



Wrought iron- This is a very pure iron where the iron content is of the order of 99.5%. It is   produced by re-melting pig iron and some small amount of silicon, sulphur, or phosphorus may be present. It is   tough, malleable and ductile and can easily be forged or welded. It   cannot however take sudden shock. Chains, crane hooks, railway couplings and such other components may be made of this iron.
Steel-  This  is  by  far  the  most  important  engineering  material  and  there  is  an enormous variety of steel to meet the wide variety of engineering requirements. The present note is an introductory discussion of a vast topic.
Steel is basically an alloy of iron and carbon in which the carbon content can be less  than  1.7%  and  carbon  is  present  in  the  form  of  iron  carbide  to  impart hardness and strength. Two main categories of steel are (a) Plain carbon steel and (b) alloy steel.
(a)        Plain carbon steel- The properties of plain carbon steel depend mainly on the carbon percentages and other alloying elements are not usually present in more than 0.5 to 1% such as 0.5%  Si or 1% Mn etc. There is a large variety of plane carbon steel and they are designated as C01, C14, C45, C70  and  so  on  where  the  number  indicates  the  carbon  percentage.
Following    categorization    of    these    steels    is    sometimes    made    for convenience:
Dead mild steel- upto 0.15% C

Low carbon steel or mild steel- 0.15 to 0.46% C Medium carbon steel- 0.45 to 0.8% C.
High carbon steel- 0.8 to 1.5% C

Detailed properties of these steels may be found in any standard handbook but in general higher carbon percentage indicates higher strength.
(b)        Alloy  steel-  these  are  steels  in  which  elements  other  than  carbon  are added  in  sufficient  quantities  to  impart  desired  properties,  such  as  wear resistance,  corrosion  resistance,  electric  or  magnetic  properties.  Chief alloying  elements  added  are  usually  nickel  for  strength  and  toughness, chromium  for  hardness  and  strength,  tungsten  for  hardness  at  elevated temperature, vanadium for tensile strength, manganese for high strength in hot rolled and heat treated condition, silicon for high elastic limit, cobalt for hardness  and  molybdenum  for  extra  tensile  strength.  Some  examples  of alloy steels are 35Ni1Cr60, 30Ni4Cr1, 40Cr1Mo28, 37Mn2. Stainless steel is one such alloy steel that gives good corrosion resistance. One important type of stainless steel is often described as 18/8 steel where chromium and nickel  percentages  are  18  and  8  respectively.  A  typical  designation  of  a stainless steel is 15Si2Mn2Cr18Ni8 where carbon percentage is 0.15.

1.2.4 Non-ferrous metals

Metals containing elements other than iron as their chief constituents are  usually referred  to  as  non-ferrous  metals.  There  is  a  wide  variety  of  non-metals  in practice. However, only a few exemplary ones are discussed below:
Aluminium- This is the white metal produced from Alumina. In its pure state it is weak  and  soft  but  addition  of  small  amounts  of  Cu,  Mn,  Si  and  Magnesium makes it hard and strong. It is also corrosion resistant, low weight and non-toxic. Duralumin- This is an alloy of 4% Cu, 0.5% Mn, 0.5% Mg and aluminium. It   is widely used in automobile and aircraft components.
Y-alloy- This is an alloy of 4% Cu, 1.5% Mn, 2% Ni, 6% Si, Mg, Fe and the rest is Al. It   gives large strength at high temperature. It is   used for aircraft engine parts such as cylinder heads, piston etc.
Magnalium-  This  is  an  aluminium  alloy  with  2  to  10  %  magnesium.  It  also contains  1.75%  Cu.  Due  to  its  light  weight  and  good  strength  it  is    used  for aircraft and automobile components.
Copper alloys

Copper is one of the most widely used non-ferrous metals in industry. It is soft, malleable  and  ductile  and  is  a  good  conductor  of  heat  and  electricity.  The following two important copper alloys are widely used in practice:
Brass (Cu-Zn alloy)- It is fundamentally a binary alloy with Zn upto 50% . As Zn percentage  increases,  ductility  increases  upto  ~37%  of  Zn  beyond  which  the ductility falls.  This is shown in figure-1.2.4.1. Small amount of other elements viz. lead or tin imparts other properties to brass. Lead gives good machining quality
and  tin  imparts  strength.  Brass  is  highly  corrosion  resistant,  easily  machinable
and therefore a good bearing material.
Ductility Zn (%)

Bronze (Cu-Sn alloy)-This is mainly a copper-tin alloy where tin percentage may vary between 5 to 25. It provides hardness but tin content also oxidizes resulting in  brittleness.  Deoxidizers  such  as  Zn  may  be  added.  Gun  metal  is  one  such alloy where 2% Zn is added as deoxidizing agent and typical compositions are
88%  Cu,  10%  Sn,  2%  Zn.  This  is  suitable  for  working  in  cold  state.  It  was originally made for casting guns but used now for boiler fittings, bushes, glands
and other such uses.
1.2.5  Non-metals
Non-metallic  materials  are  also  used  in  engineering  practice  due  to  principally their low cost, flexibility and resistance to heat and electricity. Though there are many suitable non-metals, the following are important few from design point of view:
Timber- This is a relatively low cost material and a bad conductor of heat and electricity. It has also good elastic and frictional properties and is widely used in foundry patterns and as water lubricated bearings.
Leather- This is widely used in engineering for its flexibility and wear resistance. It is widely used for belt drives, washers and such other applications.
Rubber-  It  has  high  bulk  modulus  and  is  used  for  drive  elements,  sealing, vibration isolation and similar applications.
Plastics

These are synthetic materials which can be moulded into desired shapes under pressure with or without application of heat. These are now extensively used in various industrial applications for their corrosion resistance, dimensional stability and relatively low cost.
There are two main types of plastics:

(a) Thermosetting  plastics-  Thermosetting  plastics  are  formed  under  heat and  pressure.  It  initially  softens  and  with  increasing  heat  and  pressure, polymerisation  takes  place.  This  results  in  hardening  of  the  material. These  plastics  cannot  be  deformed  or  remoulded  again  under  heat  and pressure.    Some    examples    of    thermosetting    plastics    are    phenol formaldehyde  (Bakelite),  phenol-furfural  (Durite),  epoxy  resins,  phenolic resins etc.
(b) Thermoplastics- Thermoplastics do not become hard with the application of heat and pressure and no chemical change takes place. They remain soft  at  elevated  temperatures  until  they  are  hardened  by  cooling.  These can  be  re-melted  and  remoulded  by  application  of  heat  and  pressure. Some    examples   of   thermoplastics   are   cellulose   nitrate   (celluloid), polythene, polyvinyl acetate, polyvinyl chloride    ( PVC) etc.


Post Bottom Ad

Responsive Ads Here

Pages